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Abstract— Spatial frequency domain imaging is an emerging 

technology that enables rapid, wide-field, and non-invasive 

chromophore mapping. Essentially, in this technique, a large 

area of the tissue is illuminated with a spatially modulated light 

field. The light beam reflected by the tissue depends on its opti-

cal properties, so that it can provide information about tissue 

composition through different chromophore concentrations. In 

this work, we employed a combination of Principal Component 

Analysis and Artificial Neural Networks to directly determine 

oxyhemoglobin and deoxyhemoglobin concentrations in skin 

tissue from diffuse reflectance values obtained from spatial fre-

quency domain imaging. The database consisted of 850500 sam-

ples computed from the Beer’s law and Monte Carlo simula-

tions, and it was divided into training, validation, and testing 

subsets in a 0.7:0.15:0.15 ratio. To reduce overfitting during the 

network training, Bayesian regularization, based on the Leven-

berg-Marquardt optimization, was employed. Results showed 

that the developed model predict values of oxy and deoxyhemo-

globin concentrations with a correlation coefficient of 0.997 and 

0.982, respectively. The average errors from the expected values 

were 0.98% and 0.99%, for oxy and deoxyhemoglobin, respec-

tively, with most of the samples showing absolute errors lesser 

than 4%. The developed model was applied to an in vivo study 

to determine hemoglobin concentrations in the hand of a volun-

teer. Results indicate that the developed model provides good 

performance in determining the oxyhemoglobin and deoxyhe-

moglobin concentrations, and it can be easily applied to in vivo 

measurements, with the potential to aid in the diagnosis of vas-

cular changes in skin tissue. 
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I. INTRODUCTION  

The ability of light to penetrate biological tissues, interact 

with them, and carry their physiological information is the 

fundamental principle of different medical diagnostic tech-

niques [1]. The evaluation of the processes of light absorption 

and scattering could be used to define chromophore concen-

trations, yielding valuable information about tissue health. 

Hemoglobin is an important protein that transports oxygen 

throughout the human body and its concentration monitoring 

can not only predict the success of a flap incision or a burn 

wound outcome, but it could also be used to monitor the ef-

ficiency of some cancer treatments [2]–[4]. During the last 

years, the technology of Spatial Frequency Domain Imaging 

(SFDI) has been considered to effectively create functional 

chromophores maps in a rapid, non-invasive, and wide-field 

way.  

The principle of SFDI is based on the projection of a spa-

tially modulated light beam over the tissue, which interacts 

with it, and then is captured by a CCD camera [1]. After cal-

ibration and demodulation procedures, a set of pixel-by-pixel 

maps are created, so that they represent the correspondent 

diffuse reflectance (Rd) values of the tissue at the different 

spatial frequencies employed. Inversion algorithms are then 

used to correlate this quantity to the tissue optical properties 

of absorption and scattering. Finally, a set of linear equations, 

based on Beer’s law, are solved to determine chromophore 

concentrations [5]. 

In the last years, machine learning methods have been 

used to effectively determine chromophore concentrations in 

a fast and accurate way [6]-[8]. In particular, it has been pro-

posed in literature that Artificial Neural Networks (ANN) 

could be employed to correlate chromophore concentrations 

directly from diffuse reflectance measurements in SFDI, 

which could lead to less computational time for signal pro-

cessing and minimization of errors [9]. An artificial neural 

network (ANN) is a machine learning method that can effi-

ciently find relationships within a dataset. Its power relies on 

the capacity to establish non-linear relationships, being 

largely used for pattern recognition [10]. Overall, an ANN 

consists of fully connected layers which are divided between 

an input layer, an output layer, and hidden layers. Each layer 

has associated neurons with specific weights and biases that 

are adjusted at each iteration, according to the training func-

tion. After successive iterations, the model tends to converge 

to a more accurate result [11]. Regarding applications in 

SFDI, Tsui et al. [12] and Wang et al. [13] employed a feed-

forward network with two hidden layers to obtain chromo-

phore information from diffuse reflectance spectroscopy. 

Zhao et al.[9] employed a deep residual network to directly 

mapping chromophore concentration from Rd values. Others 

ANN architectures were also employed by different authors 

in the literature [14], [15]. 

In this work, we propose a combination of a machine 

learning model based on Artificial Neural Networks and 

Principal Component Analysis, for pattern recognition that 



  

directly outputs oxyhemoglobin (HbO2) and deoxyhemoglo-

bin (Hb) concentrations from diffuse reflectance values in a 

fast and accurate manner. We also apply the developed model 

to an in vivo study, in order to evaluate its feasibility. 

II. METHODOLOGY 

A. Spatial Frequency Domain Imaging 

 The principle of SFDI is based on measuring the re-

flected light beam by a wide area of tissue, when this latter is 

illuminated with a patterned light field. A simplified model 

of the SFDI equipment is shown in Figure 1a, and the exper-

imental setup is shown in Figure 1b. A white light source 

(D555WH, Vivitek) was used to project a spatially modu-

lated light beam on the tissue. The light beam interacts with 

the tissue and carries its physiological information. A filter 

wheel (CFW6, Thorlabs Inc) selected a given light wave-

length, and a CCD camera (DCC3240C Digital Camera, 

Thorlabs Inc) was used to capture the signal. In this work, 

two different wavelengths were employed: 488 and 650 nm, 

and five spatial frequencies for the incident beam were eval-

uated: 0, 0.05, 0.1, 0.2, and 0.4 mm-1, and for each one, three 

different phases were used (0°, 120°, and 240°). 

 

 

 
Fig. 1 a) Schematic representation of the SFDI system. b) Experimental 

setup of the SFDI system from the Functional Imaging Lab (Federal Univer-

sity of Uberlândia): A - Projector; B - CCD camera with a filter wheel at-

tached and C – Target location for positioning the sample. 

 

  

 For each light wavelength value, the image acquisition 

process consists in obtaining the diffuse reflectance (Rd) of 

the tissue at the spatial frequencies and phases considered. In 

this work, the determination of Rd values was based on the 

methodology proposed by Cuccia et al. [5], which comprises 

the demodulation and calibration of the images captured by 

the camera, using an equivalent material simulator (phantom) 

[6]. At the end of this process, a set of five widefield images 

are created for each light wavelength, in which each pixel 

represents a diffuse reflectance value at a given spatial fre-

quency. 

B. Skin Model 

 The optical properties of skin tissue are directly related 

to its composition and can be defined quantitatively by the 

absorption and scattering coefficients [11]. These two param-

eters characterize the interactions of light photons with the 

tissue, and thus, they determine the behavior of the reflected 

beam [12]. In this work, the skin tissue was modeled consid-

ering oxy and deoxyhemoglobin as the major light absorbers 

[16]. In particular, the absorption coefficient, a, measures 

how much the tissue absorbs light and is normally related to 

tissue metabolic functions [2]. As proposed by Tabassum et 

al. [2], the coefficient a of the skin at a given light wave-

length  can be computed as: 

 

𝜇𝑎(𝜆) = ln(10) (𝐶𝑜𝑥𝑖𝜀𝑜𝑥𝑖(𝜆) + 𝐶𝑑𝑒𝑜𝑥𝑖𝜀𝑑𝑒𝑜𝑥𝑖(𝜆))     [1] 
 

where 𝜀𝑜𝑥𝑖(𝜆) and 𝜀𝑑𝑒𝑜𝑥𝑖(𝜆) are the extinction coefficients of 

oxyhemoglobin and deoxyhemoglobin, respectively, in units 

of cm-1/Mol, and Coxi and Cdeoxi are the respective concentra-

tions of each chromophore, in units of Mol (M). The values 

of 𝜀𝑜𝑥𝑖(𝜆) and 𝜀𝑑𝑒𝑜𝑥𝑖(𝜆) employed in this work were ob-

tained from the data compiled by Jacques and Prahl [17]. 

 To simulate real tissue parameters, we varied both hemo-

globin and deoxyhemoglobin concentrations within a wide 

physiological range of 1‒300 µM [11]. The reduced scatter-

ing coefficient, 
𝑠
′ , which is related to the probability of a 

photon to be scattered, was also varied within the limits given 

in the literature for a human tissue, between 0.5‒2.0 mm-1 [9], 

[18]. The samples were organized in a full permutation man-

ner, in order to model different skin compositions as possible 

[9]. 

C. Determination of Rd(a, 𝑠
′ ) database 

 The values of diffuse reflectance Rd for different pairs of 

coefficients (a, 𝑠
′ ) were obtained theoretically employing 

Monte Carlo (MC) simulations for light transport within the 

tissue. A MC code was developed, following the methodol-

ogy proposed by Wang et al. [19]. The simulation consisted 

in projecting a light photon shower on a homogeneous me-

dium characterized by four parameters: the absorption and 

reduced scattering coefficients a and 
𝑠
′ , respectively, the 

index of refraction n and anisotropy factor g. The simulation 

returned the spatial distribution of the reflected beam, which 

can be employed for the computation of Rd curves in the spa-

tial frequency domain, through the application of a Fourier 

transform [6]. Values of Rd at spatial frequencies of 0, 0.05, 
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0.1, 0.2 and 0.4 mm-1 were obtained, for different combina-

tions of a and 
𝑠
′  values in the interval 0.001 ≤ a ≤ 2.0 mm-

1 and 0.5 ≤ 
𝑠
′  ≤ 2.0 mm-1. In all cases, a value of n = 1.4 and 

g = 0.7 were considered, since they are representative of bio-

logical tissues [20]. The database generated with the simula-

tions consisted of a total of 850500 samples, each one repre-

senting values of Rd at different spatial frequencies at a given 

combination of (a, 𝑠
′ ) values. A surface plot of the values 

of Rd at a spatial frequency of 0.1 mm-1 is shown in figure 2, 

for different combinations of a and 
𝑠
′ . 

 
Fig. 2 Surface plot of Rd values at a spatial frequency of 0.1 mm-1 for differ-

ent combinations of optical coefficients a and 
𝑠
′ . 

D. Data preprocessing 

 Due to the high dimensionality of the dataset, training an 

artificial neural network could be challenging and computa-

tionally demanding. To address this problem, we employed 

Principal Component Analysis (PCA), which is a multivari-

ate statistic method for data dimensionality reduction [21]. 

This multivariate technique identifies new variables (princi-

pal components), which are linear combinations of the origi-

nal variables, that maximize the data variance. In this work, 

each principal component yi at a given wavelength was com-

puted as the linear combination of the five values of Rd (one 

for each spatial frequency), yielding five principal compo-

nents. The first two components represented 99.9% of the to-

tal database variance, and they were kept in our model. The 

scores of each sample at the first two principal components 

were then obtained, so that the new database was composed 

by two components for each wavelength. 

 Additionally, a min-max normalization was imple-

mented as a feature scaling method, so that sample values at 

each yi were rescaled to the interval [0‒1], to improve ma-

chine learning accuracy [22], [23].  

E. Artificial neural network training and testing  

 Once the database was created and preprocessed, it was 

used to train the ANN. Different ANN architectures were in-

vestigated, by varying the number of hidden layers and neu-

rons in each layer. The ANN architecture adopted in this 

work consisted of a feedforward artificial neural network 

with 1 hidden layer and 25 neurons [7]. A model of the ANN 

is shown schematically in Figure 3. The input layer receives 

four features: the first and second principal component scores 

at each wavelength. The output layer returns the concentra-

tions Coxy and Cdeoxy. Transfer functions of the hidden layer 

and output layer were hyperbolic tangent activation function 

and linear transfer function, respectively. The database was 

separated between training, validation, and testing at a 0.7, 

0.15, and 0.15 ratio, respectively. To reduce overfitting, 

Bayesian regularization backpropagation was employed, 

which adjusts the weight and bias according to the Leven-

berg-Marquardt optimization, and the error function consid-

ered was the mean squared error  [24]. Additionally, for the 

testing and validation data, a 3% Gaussian noise was applied 

to the input values. As stopping criteria, 2000 training epochs 

or a mean squared error value of 10‒6 were adopted to termi-

nate the training process.  

 
Fig. 3 Simplified model of the ANN. The first and second principal compo-

nents from the PCA for each wavelength are inputs of the ANN, that directly 
outputs HbO2 and Hb concentrations. 

F. In vivo study 

 In order to investigate the feasibility of the proposed 

model, an in vivo study was performed. The dorsal side of a 

volunteer’s male hand was carefully positioned into the SFDI 

imaging system, and the ANN was used to directly calculate 

oxyhemoglobin and deoxyhemoglobin concentrations from 

the measured signal. The in vivo study in human beings has 

been approved by the Research Ethics Committee of the Fed-

eral University of Uberlândia (process n. 

85363417.9.0000.5152). 



  

III. RESULTS  

 Figure 4 shows a scatter plot that compares the expected 

oxyhemoglobin concentration with the values estimated by 

the ANN. Results refer to the test data. 

 
Fig 4. Scatter plot of oxyhemoglobin concentration, comparing the expected 

values with the estimated values for the test data. The red line represents the 

expected values, and the black dots are the values estimated by the ANN. 

 

 Figure 5 shows the histogram of the relative percentual 

errors for the test data. 

 
Fig. 5 Relative error distribution of oxyhemoglobin concentration for the 

test data. 

 

 Figure 6 shows a scatter plot that compares the expected 

deoxyhemoglobin concentration with the values estimated by 

the ANN. Results refer to the test data. 

 

 
Fig. 6 Scatter plot of deoxyhemoglobin, comparing the expected values with 

the estimated values. The red line represents the expected values, and the 
black dots are the values estimated by the ANN. 

 

 Figure 7 shows the histogram of error distribution of de-

oxyhemoglobin concentrations.  

 
Fig. 7 Relative error distribution of deoxyhemoglobin concentration for the 

test data. 

 

 Figure 8(a) shows the in vivo study of the dorsal side of 

a patient hand, where the red rectangle represents the region 

of interest (ROI) captured by the CCD camera. Figure 8(b) 

shows the corresponding oxyhemoglobin concentration map, 



  

in units of 𝜇M, while Figure 8(c) shows the deoxyhemoglo-

bin concentration in 𝜇M.  

IV. DISCUSSION 

 Figures 4 and 6 show that the predicted values of oxyhe-

moglobin and deoxyhemoglobin are highly correlated with 

the expected values. In fact, the computation of R2 factor, be-

tween predicted and expected values, yielded values of 0.997 

and 0.982, for oxy- and deoxyhemoglobin, respectively, in-

dicating a strong correlation between the quantities. From 

figure 5, it is observed that the average percentual error in 

predictions of oxyhemoglobin concentration was 0.99%, 

with 90% of samples lying within the error interval between 

-2 and 2%. For deoxyhemoglobin, the average error was also 

0.98%, with most predicted values lying in the error margin 

interval between -4 and 4%. These results point to the excel-

lent accuracy and precision of the developed model. They 

also indicate that simpler ANN architectures could be suc-

cessfully employed in SFDI in order to obtain chromophore 

concentrations from diffuse reflectance data, in accordance 

with recent findings reported by Song et al. [25]. 

 The in vivo study shows that the machine learning model 

can be applied to the SFDI technology, in order to determine 

hemoglobin concentrations from diffuse reflectance meas-

urements. The concentration maps of oxy and deoxyhemo-

globin of the hand of the volunteer, shown in figure 8, repre-

sent the vascularization of oxygenated and deoxygenated 

blood. The oxyhemoglobin concentration in the blood vessels 

were in the range [200, 250] 𝜇𝑀, while values were approx-

imately constant in the rest of the image, which lied in the 

interval [100, 150] 𝜇𝑀. A similar behavior is observed in 

Figure 8(c), for the deoxyhemoglobin concentration map, 

which shows values in the range [200, 300] 𝜇𝑀 for the blood 

vessels and [150, 200] 𝜇𝑀  in the remaining tissue. It is 

known that veins are rich in carbon dioxide and poor in oxy-

gen, due to the conversion of arterial blood to venous blood 

in the hematosis process [26]. This can be seen in figure 8 as 

the blood deoxyhemoglobin concentration is higher than the 

oxyhemoglobin concentration, featuring the venous blood. 

These results points to the potential of the technique to pro-

vide diagnostic information about vascular changes in the 

skin, which could be related to morphological or physiologi-

cal tissue alterations, like those observed in different types of 

skin tumors [27]. 

V. CONCLUSIONS  

 In this work, we presented a combination of principal 

component analysis and an artificial neural network model 

for pattern recognition that accurately determines oxyhemo-

globin and deoxyhemoglobin concentrations in skin tissue di-

rectly from the diffuse reflectance values, obtained from the 

SFDI system. To measure the effectiveness of our model, we 

used the R2 correlation factor and a histogram of relative er-

rors. For the oxyhemoglobin, a value of 0.997 was obtained 

for R2 and the relative errors were mostly concentrated be-

tween the interval [-2, 2] % with a 0.99% mean. For the de-

oxyhemoglobin, the R2 factor was 0.982 and the errors were 

concentrated in the [-4, 4] % range with 0.98% average. Ad-

ditionally, we employed the developed model in an in vivo 

study, showing its feasibility in acquiring functional images 

of hemoglobin concentration. The obtained results indicate 

the good accuracy and usability of the model, since images 

are taken in a wide-field, non-contact, and rapid manner. 

Fig. 8 a) Dorsal side of a patient hand used in the in vivo study. The red rectangle represents the imaged ROI. b) Oxyhe-

moglobin concentration map (M) of the ROI. c) Deoxyhemoglobin concentration map (M). 

 



  

These results particularly point to the potential of the tech-

nique in supporting physicians in the detection of morpho-

logical or physiological changes in vascularization of the 

skin, which could be related to different tissue abnormalities, 

for example, as those observed in skin cancer. 
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